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Riassunto: In questo lavoro studiamo la probabilità di sopravvivenza di un gruppo omo-
geneo di agenti economici usando il metodo della forma-ridotta e assumendo un’evoluzione
affine delle intensit̀a di default. Discutiamo sia il caso continuo che quello discreto,
fornendo la stima di massima verosimiglianza dei parametri di interesse in casi particolari.

1. Introduction

We observeN economic agents from a common starting point (sayt = 0) and until their
respective default or censoring times, the censoring mechanism being independent of the
occurrence of default. We assume each default timeτi (i = 1, . . . , N ) to admit an intensity
processλi = {λi(t), t ≥ 0}, which describes the conditional expected default rate (also
called hazard rate in survival analysis) of agenti. This doubly-stochastic property implies
that, for any timet, the probability that agenti survives to a given future times is

P(τi > s|Ft) = 1{τi>t}E[e−
R s

t λi(u)du|Ft], (1)

whereFt is theσ-algebra that contains all the information available at timet. Intensity-
based models go back to Cox and Isham (1980), see also Artzner and Delbaen (1995)
and Jarrow and Turnbull (1995) for applications in this context, as well as Lando (Lando,
2004, Chapter5) for a survey. Here, as in a large financial literature, we consider affine
processes both for their computational tractability and flexibility in capturing certain prop-
erties exhibited by many financial time series. Simple examples of use of this type
of processes, notoriously applied to interest-rate modeling, are the Gaussian Ornstein-
Uhlenbeck model and the Feller diffusion model. In particular, we assume the default
intensitiesλi to have the following dynamics:

dλi(t) = k(θ − λi(t))dt + σ
√

λi(t)dW (t) + dJ(t), (2)

whereW is a standard Brownian motion andJ is a pure-jump process (independent of
W ), with jump sizes independent and exponentially distributed with meanµ, and jump
times of an independent Poisson process with mean jump arrival ratel (jump times and
jump sizes are also independent). This assumption leads to the explicit calculation of
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the probabilities in (1), up to solving some ordinary differential equations (ODEs) (see
Duffie et al. (2000) for details). The group of agents we consider is homogeneous in the
sense that, due to similar economic characteristics, all the intensitiesλi can be described
the same set of parameters(k, θ, σ, µ, l). We here consider both the cases of continuous
and discrete-times observations. In the former one we observe the triplets(Ti, Yi, λi(0)),
whereTi the first-exit time (due to default or censure) andYi is a dummy variable which
equals1 if the observation is uncensored and zero if censored. In this case the loglikeli-
hood is as follows

l =
N∑

i=1

(α(Ti) + β(Ti)λi(0)) +
N∑

i=1

Yi log(−α′(Ti)− β′(Ti)λi(0)),

wherefi (resp.Si) is the density (resp. survival) function associated toτi, andα andβ
are solutions of some ODEs. On the other hand, when observations occur at fixed discrete
timest = 0, 1, 2, ..., the loglikelihood of the data set(Ti, Yi, (λi(t))

Ti
t=0) takes the form

l =
N∑

i=1

Yi ln
( PiTi

1− PiTi

)
+

N∑
i=1

Ti∑
j=1

ln(1− Pij), where

Pij := P(τi ≤ j|τi > j − 1) = 1− eα(1)+β(1)λi(j−1), ∀i = 1, ..., N, ∀j = 1, ...Ti.

This leads naturally to the loglikelihood of a binary response model with exponential
cumulative distribution function as a link function. The parameters of interest of the
model (i.e. α andβ) can be estimated, by considering each discrete time unit of each
individual as a separate observation (see Cox (1970)). It then follows that a simple way to
obtain an estimation ofα andβ is to use the Newton-Raphson algorithm where the score
vector and the Hessian matrix respectively are:

s′ =

[
−

N∑
i=1

(
Yi

PiTi

− Ti

)
−

N∑
i=1

(
Yi λi(Ti − 1)

PiTi

−
Ti∑

j=1

λi(j − 1)

)]
,

H =

 −
∑N

i=1 Yi
1−PiTi

P 2
iTi

−
∑N

i=1 Yi λi(Ti − 1)
1−PiTi

P 2
iTi

−
∑N

i=1 Yi λi(Ti − 1)
1−PiTi

P 2
iTi

−
∑N

i=1 Yi λ
2
i (Ti − 1)

1−PiTi

P 2
iTi

 .
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